盛大娱乐app游戏
当前位置:主页 > 产品展示 > 风力发电机 >

万字技术长文全景分析风电制氢技术的发展路线图

时间:2019-11-09 15:36   tags: 风力发电机  

  该文首先针对风电制氢技术的基本原理和技术特征进行简单介绍,然后回顾风电制氢技术的发展历史,详细介绍风电制氢技术在国内外的研究现状,对风电制氢技术优势以及研究成果进行总结。在此基础上对风电制氢系统进行详细的阐述,并且就风电制氢技术的应用前景进行深入的分析和讨论。最后就风电制氢的关键技术以及亟待解决的问题进行全面的综述,从多个角度对风电制氢技术发展进行梳理分析,为今后风电制氢技术的发展提供了借鉴和参考。

  2017年我国风力发电量3057亿kW∙h,同比增长26.3%,弃风率为12%。2017年,全国风电弃风电量同比减少78亿kW•h时。风电作为一种清洁能源发展十分迅猛。虽然弃风问题有了较大幅度的缓解,但离可再生能源健康持续发展还有一定距离。

  如何破解弃风限电难题正成为研究人员研究重点之一。风电制氢技术为解决弃风问题提供新思路,对于解决风电就地消纳和发展分散式风力发电技术,实现可再生能源多途径高效利用具有重要意义。

  风电通过电▼▲解水制氢储能,一方面可将氢作为清洁和高能的燃料融入现有的燃气供应网络,实现电力到燃气的互补转换,另一方面可在燃料电池等高效清洁技术方面将氢能直接利用。

  风电制氢系统主要由风力发电机组、电解水装置、储氢装置、燃料电池、电网等组成。通过控制系统调节风电上网与电量比例,最大限度地吸纳风电弃风电量,缓解规模化风电“上网难”问题,利用风力发电的多余电量来电解水制氢,通过压力储氢、固态储氢等技术来提高氢的存储密度。图2所示为风电制氢的电气结构示意图,下半部分为风电并网部分,上半部分为弃风制氢部分。

  在风电并网部分,风电经低阶的机侧滤波单元过滤掉一部分谐波,然后经过AD-DC整流变换单元,将交流电转换为直流电,再经过直流支撑电路后进行逆变,逆变后的交流电经过高阶的滤波单元,将风电的谐波滤去,产生达到并网需求的高质量电能,经由升压变压器为电网供电;在弃风制氢部分,风电被滤波后经过AD-DC整流变换单元,将交流电转换为直流电,再经过直流支撑电路接入DC-DC电路,将直流电进行降压或升压处理,使直流电变换为可以制氢的电能,进而制氢。

  风力发电机不仅要将电能通过变流装置输送至电网,同时也要将弃风能源为氢电解池供电,所以对风力发电机的适应性提出了较高的要求,即风力发电机需要具有很强的抗风波动的能力。

  风电制氢电解池将风能转换为电能并电解制氢的过程需保证能源转换的高效性,同时,制氢功率的波动会对制氢装置寿命和氢气纯度产生很大影响,这对电解池提出了较高的要求。通过优化电解池的电极、催化剂等材料,降低电解成本;提高制氢效率;通过优化隔离膜等,提高性◁☆●•○△能,通过调节工艺参数的方式,提高电解池抗功率波动性,保证系统安全运行。

  2000年,英国的达盾(Dutton A. G.)等通过总结欧盟资助的风电◆●△▼●制氢项目,对风电制氢系统的实用性和风电制氢发展可能遇到的问题进行了预测,指出了风能功率波动对电解槽运行的影响并提出使风力机输出功率平稳的改进方法。

  2003年,瑞典的卡西姆(Kassem N.)等针对对风电制氢技术的经济性以及可行性进行了评估。

  2005年佛罗里达大学的史瑞夫(Sherif S. A.)等对制氢技术进行了综述并指出利用风能发电制氢能够提高风力发电的竞争力。

  2009年澳大利亚莫纳什大学的霍恩妮(Honnery D. H.)等对全球风电制氢的技术潜力进行了评估,并估算每年风电制氢技术潜力为116EJ(1EJ=1018J)。

  2010年美国学者巴特尔(Bartels J. R.)等从经济角度分析了风电制氢,得出结论是生产氢气是可行的。

  2012年土耳其的根奇(Genc M. S.)等对世界各国关于风能制氢和氢生产成本的研究进行了综述,并对土耳其风电制氢各地区的制氢经济性进行分析,根据风能成本计算制氢成本,并得出了珀纳尔巴舍等地区的氢能年产量。

  2014年德国学者班达里(Bhandari R.)等从生命周期评估角度对风电制氢进行分析,并得出了风电制氢是一种很好的制氢技术的结论。

  2017年伊朗的欧利普(Qolipour☆△◆▲■ M.)等针对伊朗各地区的风光制氢的技术性和经济性进行了评估,经研究,风电制氢是环保可行的,风电◆◁•制氢为解决弃风问题提供了新的思路。

  2008年日本的高桥(Takahashi R.)等提出了一种风电制氢协同控制方法,将可变速风力发电机和氢气制备装置安装在一起,通过输出平滑的功率曲线减小风能波动对电力系统及制氢装置的影响,并在2010年对这种风★-●=•▽电制氢系统进行了详细介绍及仿真分析,对其工作性能进行了评估。

  2010 年阿根廷拉普拉塔大学的巴蒂斯塔(Battista H. D.)等提出了由电网辅助的风电制氢控制系统,同时提出一种调节电解槽电流值的控制策略,优化了氢气生产效率。

  2011年西班牙的皮诺(Pino F. J.)等针对电解槽的运行温度对风电制氢系统的影响进行了分析,并将实际运行温度与额定运行温度下的氢生产效率进行了对比,得出了在实际温度下氢生产效率被高估的结论。

  2013年西班牙的卢西奥(Luci◇•■★▼o J. H.)等对电解制氢风力发电厂进行模拟,提出两种优化控制风电制氢功率的方法,并进行了模拟。

  2014年敦比亚(Doumbia M. L.)等提出了一种基于模糊逻辑的混合风电制氢优化管理策略,研究表明通过这一策略能够提高水电解制氢的性能。

  2015年曼娜(Sarrias-Mena R.)等针对风电制氢,对电解槽和风力机的耦合运行进行了研究,并对比了所提出的四种不同电解槽的工作特性。

  风电制氢项目最早由美国提出,他们提出通过发电机组阵列连接到电解堆的方式制取氢气。而在通过把风能转换为氢气来储存电能的领域,欧洲则处于领先位置。欧盟计划在2060年最终完全实现不依赖化石能源的可持续发展,而实现这一目标的重要一环就是将可再生能源以氢的方式大规模存储起来并加以应用。

  欧盟在希腊和西班牙分别实施了风电制氢示范工程,将风能与电解水制氢技术相结合,涉及到氢能存储、燃料电池和反渗透海水淡化等技术,为能源存储、供电和供应淡水提供“绿色”氢能源。2011年德国勃兰登堡州建成并运营世界上第一座风力-氢气混合发电站。

  2014年5月,美国发布了《全面能源战略》,将“发展低碳技术、为清洁能源奠基”作为放眼长远的战略支点,并明确指出氢能作为替代性能源在交通业转型中的引领作用。随后日本也提出了一系列风电制氢的计划及应用的方案,2016年4月,日本出台了《面向2050能源环境创新战略》,将氢能列入重点推进的五大技术创新领域,强调研发现今的制氢、储氢和氢燃料的发电技术,扩大使用范围,构建零排放的“氢能社会”。

  总体来讲,风电制氢技术尚处于理论研究阶段,很多研究才刚刚起步,仍有许多亟待解决的问题:如高适应性的风力发电机,针对宽功率波动电能的功率控制与调节方法,适应宽功率波动的高功率制氢设备,更加高效节电的制氢技术,风电制氢的集成控制及安全等。同时更加高效安全的储氢技术及燃料电池技术等也对氢能的长远发展起着至关重要的作用。

  国内的风电制氢技术的研究起步较晚,且关于风电制氢的研究还比较少。2015年时璟丽等对风电制氢的经济性进行分析,得出了风电制氢经济的最关键因素是氢市场,并且风电直供经济性优于外输氢气等结论。华北电力大学、上海财经大学、北京绿达源科技公司等也对风电制氢的可行性、经济性以及风电制氢面临的问题做出了系统论述。

  2016年,尹文良等基于1.5MW风电制氢系统进行了建模分析与仿真研究,建立了不同温度时电解槽相关仿真以及不同风速下风电水电解制氢系统仿真模型,仿真结果证明了该系统的可行性。

  2017年,宁楠等对水电解制氢装置的宽功率波动适应性进行了研究,通过对各工艺参数进行调整的方法,研究传统水电解制氢装置在风电宽功率波动条件下的适应性。

  2013年国电联合动力技术有限公司提出一种大规模风电储存的新途径——风电制氢和燃料电池发电系统,并指出大量氢气的有效储存和燃料电池技术是该系统的关键性问题;

  2014年风电直接制氢及燃料电池发电系统技术研究与示范项目立项,该项目为国家风电消纳积极探索了风电与其他形式能源互补利用新途径;

  2015年中国铁道科学研究院提出了基于非并网风电技术制氢在绿色交通物流中的应用模式和途径;

  2016年9月我国首座风电制氢的70MPa加氢站(同济-新源加氢站)在大连建成,实现了关键设备的自主创新;

  2017年国内首个风电制氢工业应用项目——河北沽源风电制氢站顺利开工,它是全球最大容量风电制氢工程,为实现风电制氢规模化和产业化提供经验和基础。

  2018年1月,同济大学承担的“十二五”863计划先进技术能源领域“基于可再生能源控制/储氢的70MPa加氢站研发及示范”项目顺利通过科技部高新司组织的项目验收,标志着中国在氢能技术领域的研究处于国际先进水平。

  通过调研发现,采用风电制氢的方式储能从经济效益上是可行的。传统的化学储能技术具有容量小、寿命短等缺点,而风电制氢储能技术相对于其他储能方式具有高容量、易运输、无污染的优点。随着储氢技术以及储氢材料的不断发展,制氢储能为实现能源大规模存储提供了可行性。相较于其他储能方式风电制氢有望实现大规模的储能,为解决可再生能源的存储提供了新思路。

  氢能作为绿色的新能源,具有环保、能量密度大、转换效率高、储量丰富和适用范围广等特点,氢的高能量密度使很小体积的氢能便可产生巨大的能量。风电制氢可以推动以氢能为主要能源的新能源时代的到来,推动工业、交通乃至人们生活的无碳化,且更环保。

  基于风电制氢的储能技术,风电只需进行最简单的变压、整流处理,便可以实现氢能的制取,实现能量的存储,相对来讲可以省去许多电力电子设备,节省成本。

  总体看,以德国为代表的欧洲在风电制氢技术方面的发展相对较快,在制氢、储氢、用氢领域均有示范性工程。目前氢气在能源方面主要应用在氢燃料发电、氢燃料电池。氢能应用在新能源汽车的进程因需要庞大的基础设施(如加氢站、输氢网络等)发展相对缓慢。而我国在氢能利用方面的研究还相对较少。氢能作为可再生清洁能源越来越受到重视,是可再生能源发展的一个重要的战略方向。

  风电制氢的发展将会带动风电装备、氢气制备、储氢、运营和氢气应用等各行各业的发展。首先,在发电过程中,将会利用到大量的风力发电机、齿轮箱、叶片、电控系统以及塔基、塔架、轴承等基础设施,应运而生的便是相关机械制造及电机行业的发展,有助于对风力发电机等项目的研究和制造业的升级改造。电解水制氢技术因性能可靠、高效而具有很好的应用前景。

  氢能利用主要包括氢的廉价制▪•★取、安全高效储运和规模应用。这也有助于我国对电解水制氢技术和储氢技术的研究,促进相关装备制造产业的发展。风电制氢对我国的燃料电池的发展也将有很大的推动作用,燃料电池具有很高的发电效率并避免了严重的环境污染。

  在较大的风速波动下,实现发电机能发电就能利用。同时可根据风量调节氢气产量,实现风机全转速运行范围内电能的全部转换。该类制氢用风力发电机组比并网机组成本降低30%以上,甚至更多。非并网风电制氢技术对于解决能源消纳问题十分高效,且其产生的氢能实现了清洁和可再生等。

  相对于离/并网制氢,非并网风电制氢技术为实现大规模的氢能综合利用提供了可能,推进了氢能时代的到来。非并网制氢技术相对于并网制氢技术可以产生更多的氢能,可为工业、交通、居民生活提供必要的氢能源。

  早在1993年,加拿大Ballard公司研制了第一辆可以氢作为燃料的零排放的公交车,引发了全球性燃料电池电动车的研究开发热潮。许多国家相继投入了大量人力、财力开展氢燃料电池汽车方面研究,并取得了长足进展。2015年日本的丰田公司先后推出了燃料电池轿车“Mirai”和“Clarity”;紧接着,韩国现代也推出了燃料电池版的途胜汽车。2017年在法兰克福车展上,奔驰发布了首款量产氢燃料电池轿车(插电式混合动力模式驱动)。

  我国氢燃料电池主要应用在公交车、物流车、班车等领域。2017年10月佛山(云浮)产业转移工业园推出的氢能燃料电池厢式运输车,已进入小规模商业化推广阶段;2017年10月26日世界第一辆氢燃料电池有轨电车在河北唐山实现运行。2018年1月,74辆氢燃料电池公交车作为张家口市区公交车辆被正式采购。目前我国发展燃料电池汽车的基础设施还不够完善,需要进一步加强基础设施建设,燃料电池技术在续驶里程、寿命方面仍需突破。风电制氢技术的发展将极大推动燃料电池汽车的发展,从而改善环境问题。

  目前,电解制氢技术可分为碱性电解技术、固体氧化物电解技术和质子交换膜电解技术等。其中碱性电解技术由于技术最为成熟,是商业化应用最为普遍的一类电解制氢技术。由于风力发电系统具有间歇性、随机性的特点,应用于联合系统的电解制氢系统应具有不稳定电能条件下安全、可靠和高效制氢的能力,即电解制氢系统应具有良好的动态调节能力。碱性电解技术与质子交换膜电解技术相比,其动★△◁◁▽▼态响应时间较短,适用于风电制氢系统。相比之下固体氧化物电解技术的响应时间比较长,目前并不适合应用于大规模风电制氢。

  风电制氢技术的快速发展,将带领风电制氢设备实现进一步的转型升级。宽功率波动高效电解制氢系统将快速发展,如基于碱性电解制氢的电解系统和基于质子交换膜技术的电解制氢装备,通过对其材料进行升级改进,实现电能安全、高效率、低成本的转换。

  电解制氢系统还亟需解决容量偏低的问题,目前的风电制氢系统规模一般在几兆瓦以内,鉴于目前大型的集中式风能已经达到了几百兆瓦甚至更大的发电容量,电解制氢系统容量的不足将是制约联合系统实际应用的一大障碍,研究更大规模、更高容◇=△▲量的电解制氢系统十分重要。同时风电制氢技术还将带动氢燃料电池朝更高功率密度发展以及储氢设备的材料完成进一步升级,实现储氢设备的大容量、低成本。

  风电制氢技术利用了成熟的发电、电解和氢能源应用技术等组合,不断地扩大其规模,逐步替换传统的碳能源,通过大规模的应用还可进一步提高其转换效率,满足社会的能源需求,是未来可持续能源发展的途径之一。风电制氢对未来的相关产业,例如风电产业、智能电网、燃料电池发电系统、新能源汽车(以氢为燃料电池的汽车)的发展意义重大。

  目前应用最为广泛的风力发电机组为双馈式和永磁直驱式风力发电机组。对永磁直驱同步发电机和双馈异步发电机的结构、原理、工作特性及其对风电制氢的适应性研究仍然需要深入。同时针对用于风电制氢的新型开关磁阻式以及双凸极结构的发电机也处于研发试验阶段。

  双馈异步风力发电机与直驱式永磁发电机在调速范围和能量传递方面无太大差别。双馈异步感应风力发电机的无功调节范围较大,电能质量较高,但其控制方式较为复杂。直驱式永磁发电机主要通过增加磁极对数从而降低电机的额定转速,减少了增速齿轮箱部件,其性能可靠性远远高于双馈式。永磁直驱同步风力发电机不需要无功补偿装置,虽然风能利用率相对较高,但造价高、损耗较大。

  风能充足▪▲□◁时,一方面开关磁阻发电机从燃料电池获得励磁,另一方面又给负载供电,同时能够给电解池供电制取氢,将剩余的电能转换成氢能储存起来。当风力不足时,制氢储能将释放出来,供负载使用。该发电机高效、适应性强、成本低,对风电制氢来说较为合适。对于非并网风电制氢而言,其风力发电机将更加侧重于结构简单、维护方□◁便、捕获风能能力强、高可靠性和低成本的发展方向。

  双凸极直流发电机定转子外形与开关磁阻发电机相似,为双凸极结构,是一种较为适合非并网风电制氢系统的发电机,其结构简单、成本低。秦海鸿等提出了一种双凸极发电机,并对该发电机基础理论运行原理及结构等进行详细理论及机理阐述。若实现在直驱发电系统的广泛应用还需要对理论及其运行机理进行更加深入的研究。目前该发电机的发展尚处于理论基础研究和探索验证阶段。

  电解制氢技术目前较为成熟,其关键技术就是电解槽。目前电解槽主要可分为碱性电解制氢、固体氧化物电解制氢、质子交换膜电解制氢。

  (2)质子交换电解制氢:聚合物电解质膜(Polymer Electrolyte Membrane, PEM)电解槽主要也是由两电极和聚合物薄膜组成,质子交换膜通常与电极催化剂成一体化结构。PEM电解槽不需电解液,只需纯水,比碱性电解槽安全、可靠。该制氢方式效率可达到90%以上,但是因其电极多用贵重金属铂,价格昂•●贵,难以大规模应用。

  风电制氢系统的功率输出波动范围非常大,制氢功率的波动会对制氢装置产生一定影响,影响主要有两个方面:一是大幅波动对装备寿命的影响;二是对产品气体纯度的影响。制氢系统中阴极和阳极之间具有透水隔气功能的薄膜布,防止氢气和氧气混合,但是仍有少量氢气与氧气渗入隔膜,所以电解装置中装有氢氧浓度分析仪,用来监测和保护,防止爆炸。

  ①先进的无机碱性离子膜。膜厚仅•☆■▲ 0.2mm,且具有离子渗透性强,氢、氧气体分离度高,阴阳两电极的电阻值小的特点,因此膜电压很低,又因电极的极间距几乎为零,因此在增加电解电流密度时不会增加槽电压,发热量小,电解效率高,能耗大大降低。

  ②无机碱性离子膜不易破裂,在碱性溶液中不会发生溶解,其运行安全性比传统电解槽高。

  ③电解液全自然循环设计,不再采用循环泵,不仅节约了泵类所消耗的能耗,也免除了大量繁琐的维修及维护工作。

  水电解制氢的关键是降低电解过程中的能耗,提高能源转换效率。水电解制氢系统包括电解槽制氢和氢气净化两个系统,电解槽水电解过程中,在电解液中加入添加剂,或低电流密度运行,可以降低氢气生产单位电耗,节省用电。

  针对电解液的材料进行改进和针对氢净化系统的控制技术进行改进,均可减小耗电,提高制氢效率。目前商用电解槽法,能耗水平约为4.5~5.5kW•h/m3 H2(标准),能效在72%~82%。

  目前中国船舶重工集团已针对风电系统研发出全自动的柜体式风电制氢装置,氢产量可达1.5N•m3/h,产品氢气纯度可达99.5%。宽功率电解池不但提高了风力发电系统效率,而且◇…=▲有助于电解制氢系统的安全运行。因此,在宽功率波动下,高效电解制氢设备的开发至关重要。现有的一些主要制氢厂家的制氢设备参数见表2。

  风电制氢-燃料电池系统由风力发电系统、电解制氢系统、压缩储氢系统、燃料电池系统及相关协调控制单元组成。风力发电系统及电解制氢系统通过判断弃风量大小来确定是否开始制备氢气;根据风电并网的容量和质量及本地负荷的实际需求和储氢系统的运行情况等协调控制,决定了燃料电池系统与其他系统之间的工序协作。

  现有氢能传输方式主要为高压储氢、液氢和固态储运,有关氢气大规模输运管道的研究还在进行中。压缩储氢系统的控制策略主要包括充氢过程和供氢过程控制策略。压缩储氢系统包括缓冲瓶的压力传感器、高压储氢瓶的高压压力传感器、温度传感器和供储系统中的氢气泄露传感器等。供氢过程的控制主要通过给高压储氢装置发送信号完成供气过程,高压储氢装置通过减压器进行氢气的释放,在减压器设有低压压力传感器,可监测减压器是否故障,保证储氢供气系统安全运行。

  针对风电制氢中主要应用直流的特点,开展相应的直流微网研究是目前的研究重点之一。直流微网由分布式发电单元、储能装置及负荷按照一定拓扑结构组成的网络。

  风电产生的电能可通过简单的变流技术之后通过制氢的方式并入直流微网,通过储氢系统和燃料电池完成电能的存储转换;电能再经升压变流之后,在需要的时候为用户负载或电网提供电能。微电网控制灵活、能源利用率高,适合风电制氢中电解负载对▲=○▼风能变化灵活调整和组合的特点,在解决宽功率范围风能波动、高适应性能量转换、离/并网切换、负荷供电可靠性上有着极大的优势。

  风电制氢技术中引入直流微网为分布式能源开发和多能耦合储输系统应用和研究提供了新的方向。在满足本地用户对电能质量和安全要求的同时,大大减小了对电力系统或分布式能源的影响。风电并网与◆■离网的协同运行,既可使风能利用率提高,又可以减小对电网的冲击,同时灵活地为用户负载以及电网完成电能输送,是一种灵活、可靠、环保的技术方案。

  但是目前针对风电制氢的电力电子装置研究较少,国内外只有少数学者展开了研究,由于风电制氢需要考虑风能的宽功率波动性对制氢效率以及制氢设备寿命的•□▼◁▼影响,而合适的电力电子器件可以在承受宽功率风电输入的前提下,为制氢装置提供较为稳定的电压输入,所以研究适合用于风电制氢的大容量、宽功率波动的电力电子器件也尤为重要。

  目前国内外针对风电制氢的电力电子装置研究较少,周杰等对热电领域的六种DC-DC变换器的优缺点进行了详细分析,这为风电制氢的变流器结构提供了参考。徐琪等针对适用于风电制氢的Cuk变换器进行了数学建模,并对电解槽的负载特性进行了仿真分析,最后基于DSP搭建了Cuk变换器的实验装置,使用可编程直流电源模拟风电输出,并采用改变电路占空比的方法保证输出电压稳定,使其满足了电解槽负载的需求,为风电制氢的电力电子器件研究提供了参考。

  在倡▲●…△导绿色发展的时代,氢能作为一种清洁能源有望得到巨大发展。总体来讲,以德国为代表的欧洲在风电制氢技术方面的发展相对较快,国内外相关研究相对较少,风电制氢技术的发展仍然面临诸多关键问题,如成熟的风电制氢发电机结构、针对风电抗功率波动的电解槽优化、高寿命的燃料电池、大容量的储氢设备以及安全的控制系统和适用于风电制氢的电力电子装置等,都尚需加大研究力度,实现突破。

  声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。

盛大娱乐app游戏